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ABSTRACT and strains acting within the microstructure on

-
Oynamic fracture analysis of concrete
structures necessitates a triaxial stress-strain
relation that describes gradual strain-softening
with reduction of ternsile stress to zero., A new
model which does that and is applicable under
general loading, including rotating principal
stress directions, is proposed. It is based on
accumulating stress relaxations due to micro-
cracking from the planes of all orientation within
the microstructure. Comparisons with tensile test
data are given{

Introduction

Fracture analysis of certain brittle heter-
ogeneous materials, such as concretes and many
rocks, requires consideration of progressive micro-
cracking in the fracture process zone as the frac-
ture is being formed. ‘This type of fracture may be
efficiently modeled with the crack band approach,
in which the material behavior in the fracture
process zone is described by a strain-softening
triaxial stress-strain relation, provided that the
strain~-softening behavior is associated with a
zone of a certain characteristic width that is
treated as a material property or is determined in
advance by stability analysis. A suitable tri-
axial stress-strain relation of the total strain
type (deformation theory type) has been recently
formulated and has been shown to lead to satis-
factory agreement with essentially all existing
fracture test data available in the literature
[1, 2}. This stress-strain relation is, however,
limited to situations in which the directicn of the
maximum principal stress does not significantly
rotate during the fracture formation, This is not
so in certain important situations, especially
various dynamic problems. Here, a longitudinal
wave may produce only a partial tensile fracture
(i.e., distributed microcracking) and the fracture
may be completed subscequently when a shear wvave
arrives, causing a principal tensile stress in a
different direction. For such situations of pro-
gressive fracturing, it is necessary to develop a
triaxial strain-softening stress-strain relation
whicli is path-dependent and 1s formulated incre-
mentally. A model called microplane model is de-
veloped to fill this need. We propose here a
model in which the constitutive properties are
characterized by a relation between the stresses

planes of various orientation, called the micro-
planes. This formulation involves no tensoirial
invariance restrictions. The restrictions 2an
then be satisfied by a suitable combination of
planes of various orientation. E.g., in the case
of isotropy, each orientation must be equally
frequent. Thus, one circumvents the difficulry of
setting up a general nonlinear constitutive equa-—
tion in terms of proper invariants.

The idea of defining the inelastic behavior
independently on planes of different orientation
within the materizl, and then in some way super-
imposing the inelastic effects from all planes,
appeared in Taylor's work [3] on plasticity of
polycrystalline metals. Batdorf and Budianski [4)
formulated the slip theory of plasticity, in which
the stresses acting on various planes of slip are
obtained by resolving the macroscopic applied
stress, and the plastic strains (slips) from all
planes are then superimposed. The same super=-
position of inelastic strains was used in the so-
called multilaminate models of Zienkicwicz et al,
[5) and Pande et al [6, 7] and in many works on
plasticity of peulycrystals., While the previous
works dealing with plasticity of polycrystals {3,
4, 8, 9, 10-14) or soils [15,16% the stresses on
various microplanes were assumed to be equal to the
resolved macroscopic stress, this new model uses a
similar assumption for parct of the total strains.

l'undamental Hypotheses

The resultants of the stresses acting on the
microplanes over unit areas of the wacroscopic
continuum will be called the microstresses Sij’

and the strains of the macroscoplc continuum accu-
mulated from the deformations on the microplanes
will be called the microstrains, cij' With regard

to the interaction between the ticro-sand macro-
levels, onc may introduce the following basic
hypctheses.

strain, Cij' is a sum of a purely elastic macro-

. a .
strain Eij that i{s unuffected by cracking, and an
inelastic macrostrain eij which reflects the

stress relaxation due to cracking, i.e.,
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Here, latin lower case subscripts refey to car-
tesinn coordinates x| (i = 1,2,3).
i

Hypothe:

= The normal microstrain el
- v

whichh governs the progressive development of crack-
ing on a microplane of any orientation is equal to
the resolved macroscopic strain tensor eij for the

same plane, i.e.,

e =1n n, e, . (2}
n i) i)

in which “i = direction cosines oi the unit normal

o
n of the wicroplane and the repeated latin lower
case subscripts indicate a summation over 1, 2, 3.

Hypothesis [¥1., - The stress relaxation due
to all microcracks normal to ® is characterized by
assuming that the microstress s, on the microplane

of any orientation is a function of the normal
microstrain e on the same plane, i.e.,

S5 ° 2n/3) Fle ) (3

The factor (27/3)is introduced just for convenience,
as it will later cancel out.

The last hypothesis is similar to that made
for shear microstresses and microstrains In the
slip theory of plasticity. Hypothesls [1 is how-
ever opposite. There are three reasons for hypo-
thesis I1.

1. Using resolved stresses rather than resolved
strains on the microplanes would hardly allow des-
cribing strain-softening, since in this case there
are two strains corresponding to a given stress but
only one stress corresponding to a given strain.

2. The microstrains must be stable when the
macrostrains are fixed. It has been experienced
numerically that, in the case of strain-softening,
the mcdel becomes unstable if resolved stresses
rather than strains are used.

3. The use of resolved strains rather than re-
solved stresses seems to reflect the microstructure
of a brittle aggregate material more realistically.
The use of resolved stresses 18 reasonable for poly=-
crystalline metals in which local slips scatter
widely while the stress is roughly uniformly dis-
tributed throughout the microstructure. By con-
trast, in a brittle aggregate material consisting
of hard inclusions embedded in a weak matrix, the
stresses are far from uniform, having sharp ex-
tremes at the locations where the surfaces of
aggregate pieces are nearest., The deformation of
the thin layer of matrix between two aggregate
pleces, which ylelds the major contribution to in-
elastic strain, 1s determined chiefly by the
relative displacements of the centroids of the two
aggregate pieces, which roughly correspond to the
macroscopic strain. The microplanes may be
imagined to represent the thin layers of matrix
and the bond planes between two adjacent aggregate

pleces, since microcracking is chiefly concentrated
there.

in Hypotchsis 111, the relaxration of shear
microstresses s;m cavsed by the shear and normal

microstrains e“t and ¢, is ueglected. This assump-

tion is probably quite good for very small crack
openings, since it has been deduced from test data
on shearing of cracks in concretes that no rela-
tive shear displacements on the rough interlocked
cracks is possible before a certain finite crack _
opening is produced, and that the shear stifiness
of the cracks decreases rather slowly as the crack
gradually opens. One must admit, however, that

Eq. 3 (Hypothesis 111) is also justified by its
simplicity. 1t would be much more complicated to
assume a general relation between the normal and
shear microstresses and microstrains on each plane.

Tengential Stiffness Matrix

The virtual work of stresses per unit volume
may be written, according to Eq. 1, as &W
= 3 = 3 + . i h
Uij ‘Stij Uij 561}, uij Geij Summing the

a
virtual work due to Scﬁ and Geij' we further have

We=o, b, +s de,,, in which s,, is the
i) ij ij ij 1]

macrostress tensor resulting from s“ on all planes,
q a

and U;j is the stress tensor corresponding to cij'

Since both expressions for éW must hold for any

, we must have S;y= 0 =0,..

‘a 3
Gt.ij and any 5Li j ij 1§

Equilibrium conditions may be expressed by
means of the principle of virtual work:

c _ 4 - -+
W = 3 L aij Seij = 2 fssn Gen f(n)dsS (4)

in which S represents the surface of a unit hem-
isphere, the factor (4n/3)is due to integrating
over the surface of a sphere of radius 1, and dS
= sinédod¢ (Fig. 1b). Note that we do not need to
integrate over the entire surface of the sphere,
since the values of o, or e are equal at any two

diametricaily opposite noints cn the sphere.
Function f(n) defines the velative {requency of the
planes of various cricutatious ¥, contributing to
inelastic stress relaxation.

Substiguting Fgs. 2-3 into FKq. 4, we get
[’ Se =] I-‘(cn) n, w 6eij T (n) d8, and decause

13 %1 7 Jg j
this must hold for any &e,,, we must have

1)

27 (n/2 .
o“ = [o fo F(en) n, nj f(n) siné d¢ d6 (5)

Furthermore, according to Eq. 2, dF(en)

= ! = ' I: " -
F (en)den F (e“)nk no dekm' and thus differ

entiation of Eq. 5 finally yields

— C
4% = P jkm Y%km ©
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in which

. F2neu/2 .
l)ijklll =}[ [ ‘.Iijkm ¥ (u“) f(n) sing d¢ d0, with
Q

0 (N
aijkm = ni“j“k“m
c .
. c calle angent st S a
Dijkm may be called the tangent stiffuesses of the

micrvoplane system. Note that the sequence of sub-
¢

i jku
are only six independent values of incremental
stiffnesses. Eq. 7 applies to initially aniso-
troplc solids. For isotropic solids, we may sub-
stitute f(n) = 1.

secripts of D is immaterial; thercfore, there

The mathematical structure of the preaent
model may be geometrically visualized with the
rheologic model {n Fig. la.

The compliance correspouding to the addi-
tional elastic strain o?i must satisfy isotvopy
conditions, and so

a 1 1 1
C == 8 8 +(8,, 8, -z 68, 6 8
ijkm o 1] “km 260( ik jm 3 i) km) ®)

in which K* and 6" are certain bulk and shear
moduli which cannot be less than the actual initial
bulk and shear moduli K and G. For fitting of
test data, it was assumed, with success, that

1/6* = 0.

Recalling Eq. 1 (and Fig. la), we may now
write the incremental stress-strain velation as

doij = Dljkm dcij, with [Dijkm] =

4 " (9)

C a
dijkm (Cijkm)]

(@

., Applying Eq. 7 to elastic deformations (with
€(n) = 1), one finds that the matrix in Eq. 7
always yields Poisson's ratio v = 1/4., This is be-
cause the slips on all microplanes are neglected.
Since v = 1/4 is not quite true for concrete, the
additional elastic strain must be used to make a
correction. Let us now determine the value of K
needed to achieve the desired Poisson's ratio v.
Let superscripts ¢ and a distinguish between the

values corresponding to Dijkm and C?jkm' For
uniaxial stress we have oy = 011/91(a + oll/l-:C
and €,, = 011/9Ka - vcoll/EC in which v¢ = 1/4
and E¢ = 2ﬂE“/5, B“ = F'(0) = initial normal
stiffness for the microplane. Since €gp = = VEI s

we must have

g 1 + v
YA T A c

= pS E (for v £ v') (10)
(v = V)
This i3, of course, under the assumption t’
1/6% = 0.

The stress-strain relation for the micro-
planes, relating ux to L“, must describe cracking
'}

atl the way to complete {racture, at which %

reduces to zero. 1n view of the kinematics
visualized in Fig. 1b, 1t is clear that ¢, asa

function of ¢ must first rise, then reach a max-
imum, and then gradually decline to zero. We
choose the final zero value to be attained asymp-
totically, since no precise information exists on
the final strain at which u“ = 0, and since a

smooth curve is convenient computationally. The
following expressions were used in computations
{19] (Fig. lc);

ke M)
for € 0: ¢ = E e @ n .
(11)
tor £ €0: o =E e

in which E“. k, and p are positive constants; k =
1.8 x 10, p = 2.

The integral in Eq. 7 has to be evaluated
numerically, approximating it by a finite sum:

N

C - 1]

ijkm = Z Yol jum &1 12)
Qs

in which a refers rto the values at certain numer-
ical integration points on a unit hemisphere (i.e.,
certain directions), and w, are the weights

associated with the integration points.

Since in finite element programs for incre-
mental loading the numerical integration needs
to be carried out a great number of times, a very
efficient numerical integration formula is needed.
For the slip theory of plasticity, the integration
was performed using a rectangulor grid in the 6-¢
plane. This formula is, however, computationally
inefficient because the integration points are
crowded near the poles, and also because in the
0-¢ planc the singularity arising from the pole
takes away the benefit from a use of higher-order
integration formula.

Optinally, the integration points should be
distributed over the spherical surface as uniformly
as possible. A perfectly uniform subdivision is
obtained when the microplanes normal to the n-
directions are the sides «f a regular pelyhedron.

A regular polyhedron with the most sides is the
leosahedron, for which N = 10 (half the number of
sides). Such a numerical integratlon formula was
proposed by Albrecht and Collatz {18}.

Numerical experience revealed, however, that
10 points are not enough wher strain-softening
takes place; it was found that the strain-softening
curves calculated for uniaxial tensile stresses
oriented at varlous angles with regard to the a-
dirvections significantly differ from each other,
even though within the strain-hardening range the
differences are negligible. Therefore, wore than

10 points are needed, and then a perfectly nniform
~




Table 1 - Direction Cosines

o(hd)

O
i

1}

X2

and Weights for 2 x 21 Points (Orthogonal)

(V-2 VI I N

10
11
12
13
14
15
16
17
18
19
20
21

0.7071067812
0.7071067812
0.7071067812
0.7071067812
0

0

0.3879072746
0.3879072246
0.38790727406
0.3879072746
0.3879072746
0.3879072746
0.3879072746
0.3879072746
0.8360956240
0.8360956240
0.8360956240
0.8360956240

0.7071067312
~0.7071067812
O B
0
0.7071067812
0.7071067812
0.3879072746
0.3879072746
-0.3879072746
-0.3879072746
0.8360956240
0.8360956240
-0.8360956240
-0.8360956240
0.3879072746
0.3879072746
-0.13879072746
-0.3879072746

0.7071067812
-0.7071067812
0.7071067812
-0.7071067812
0.8360956240
-0.38360956240
0.8360956240
~0.8360956240
0.138790727406
-0, 3879072746
0.3879072746
-0.3879072746
0.13879072746
~0.3879072746
0.3879072746
-0.3879072746

0.02652161274
"

. 01993014153
"

g = 33,269905"

Table 2 - Direction Cosines and Weights for 2 x 25 Points,

S0,

VOOV W~

0.7071067812
0.7071067812
0.7071067812
0.7071067812
V]

0

0.3015113354
0.3015113354
0.3015113353
0.3015113354
0.3015113354
0.3015113354
0.3015113354
0.3015123354
0.9045340398
0.9045340398
0.9045340398
0.9045340398
0.5773502692
0.5723502692
0.5773502692
0.5773502692

0.7071067812
-0.7071067812
0

0.7071067812
0.7071067812
0.3015113354
0.3015113354
=0.3015113354
-0.3015113354
0.9045340398
0.92045340398
~0.9045340398
-0.9045340398
0.3015113354
0.3015113354
=0.3015113354
-0,3015113354
0.5773502692
0.5773502692
-0.5773502692
-0.5773502692

0.7071067812
-0.7071067832
0.7071067812
~0.7071067812
0.9045340398
-0.9045340398
0.9045340398
~0.9045340398
0.3015113354
-0.3015113354
0.2015113354
-0.3015113354
0.3015113354
-0.3015113354
0.3015113354
-0.3015113354
0.5773502692
-0.5773502692
0.5773502692
~0.5773502692

(4]
w

0.01269841058
"

0.02257495612
"

0.02109375117
"

g = 23.239401°
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spacing of a- divections is ilwpossible.

Badaut aud oh [17) developed numerical inte-
gration fermalas with more than 10 poiuts, which
glve cousistent results even in the strain-soft-
ening range.  The most efficient fovmulas, with o
neatrly wifovm spacing of a-directions, ave ob-
tained by cevtain subdivisions of the sides of an
icosahedron and/or a dodecahedron [17).  Such for-
mulas do not cexhibit orthoponal svmmetries.,

Other formulas wilhch do were also developed [17].
Taylotv series oxpansions on o sphere were applied
and the weights vy assoclated with the integration

peints vere solved {rom the condition that the
greatest possible number of terms ot the Taylor
series expansion would cancel out. ‘The angular
dirvections of certain integration poiunts were {ur-
ther determined so as to minimize the errvor term
of the expaunsion, VFormuias involving 16, 21, 23,
33, 37 and 61 poiunts were derived, with errovs of
8th, 10th and 12th arvder [17). Table ! defines
two of these uwumerical integration formulas, with
21 and 25 points, one without, and one with ortho-
gonal symmetrvy. These formulas give accuracy that
suf f ices for most pratical purposes. For c¢rude
caleulations, a formula with 16 points (17] may
sometimes also suffice. The divections of integra-
tion peints are illustrated in Fig. Also shown
ene stress~stratn diagrams calculated with the
formula for uniaxial tensiom in various directions
wirth regard to the iuntergration peints (dirvections
a, b, ¢, d,...); the spread of the curves charac-
terizoe the range of error.

Numerical Algorithm

The following numerical algorithm may be used
for the microplane model in ecach loadiung step.

(@)

1. Dercrmine °,

divections «w = 1,...N. In the first {reration of
the loading step, use r.“ for the end of the pre-

from Fqs. 1 and 2 for all

vious step, aund in subsequent interations use the

value of u“ determined for the mid-step in the

previous itéra\tiou. {n structural analysis, re-
peat this for all finite elements and for all in-
tegration points within each finite clement.

2, For all directions 'ﬁ(“? evaluate F'(e“)
for use in Eq. ?. Also check for each direction
whether unloading occurs, as indicated by viola=-
tion of the condition sn[\c" > 0. If violated,

replace F' (e“) with the unloading stiffness (which
may be approximately taken as F.“; however, a

better expression exists.)

. C R .
3. Evaluate Dljklu from Eq. 7 and Du‘.:m from

Eq. 9. In structural analysis, repeat this for
all eclements and all integration points in each
element., When solving stress-strain curves, cal-
culate then the increments of unknown stresses

and unknowm strains from Ey. 9. In structural
analysis, solve (by the finite element method) the
increments of nodal displacements from the given

load increments, and subsequently calculate the in-
croments of S and ¢y for all elewments and all

1 H
iuntegration points in each element. Then advance
to the next iteration of the same loading step,
or advance to the next loading step.

In simulating wniaxinl tensile Joading of
tixed direction, the unleading cirterion is not
important since the only unloading occurs at mod-
erate compressive streosses, for which a perfectly
elastic wionding may be assumed,

The microplane model can be callbrated by
comparison with divect tensile tests which cover
the strain-softening response.  Such tests, which

e

can be carried out in a very stiff testing machine =
and on sufficiently small test specimens, have g
been performed by Evans and Marathe [20] as well [~
as others {21-23}. Optimal values of the ;;

3

three parameters of the medel, li“, k, and v, have =

been found [19] so as to achieve the best fits of
the data of Evans and Marathe, Some of these fits
are shown as the solid lines in Fig. 3, and the
data are shown as the dashed lines. A better test
of the mode! would. of course, be a tensile test
under rotating principal stress directions, but
such tests have not yet been performed,

]
£

sy

Note that with this theory, ouwe has only two
waterfal parvameters, l!“ and k, to determine by

dolnbg =

fitving test data, Trial and errvor approach is
sufficient for that.

The microplane model is capable of simula-
ting realistic tensile stress-strain curve with
strain-softening and reduction of stresses all the
way to zero. Combined with the blunt crack band
concept, in which the strain-sotfteniug is re-
stricted to a region of a certain characteristic
width that is a watevial property [1,2], this model
should give a realistic representation of fracture,
‘The model is general and does not preclude appli-
cation to stress histories in which the principal
stress directions rotate. These features are
particularly attractive for the analysis of the
response of concrete structures subjected to
dynamic loads.
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